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Genome-wide autozygosity is associated with lower general
cognitive ability
DP Howrigan1,2, MA Simonson3, G Davies4, SE Harris5,6, A Tenesa7,8, JM Starr5,9, DC Liewald5, IJ Deary4,5, A McRae10,11, MJ Wright10,
GW Montgomery10, N Hansell10, NG Martin10, A Payton12, M Horan13, WE Ollier12, A Abdellaoui14,15, DI Boomsma14,15,16,
P DeRosse17,18,19, EEM Knowles20, DC Glahn20, S Djurovic21,22, I Melle21,22,23, OA Andreassen21,22,23, A Christoforou24,25, VM Steen24,25,
SL Hellard24,25, K Sundet21,26, I Reinvang26, T Espeseth26,27, AJ Lundervold28,29,30, I Giegling31, B Konte31, AM Hartmann31, D Rujescu31,
P Roussos32,33, S Giakoumaki34, KE Burdick32, P Bitsios35,36, G Donohoe37, RP Corley38, PM Visscher5,10,11,39, N Pendleton12,
AK Malhotra17,18,19, BM Neale1,2, T Lencz17,18,19 and MC Keller38,40

Inbreeding depression refers to lower fitness among offspring of genetic relatives. This reduced fitness is caused by the inheritance
of two identical chromosomal segments (autozygosity) across the genome, which may expose the effects of (partially) recessive
deleterious mutations. Even among outbred populations, autozygosity can occur to varying degrees due to cryptic relatedness
between parents. Using dense genome-wide single-nucleotide polymorphism (SNP) data, we examined the degree to which
autozygosity associated with measured cognitive ability in an unselected sample of 4854 participants of European ancestry. We
used runs of homozygosity—multiple homozygous SNPs in a row—to estimate autozygous tracts across the genome. We found
that increased levels of autozygosity predicted lower general cognitive ability, and estimate a drop of 0.6 s.d. among the offspring
of first cousins (P= 0.003–0.02 depending on the model). This effect came predominantly from long and rare autozygous tracts,
which theory predicts as more likely to be deleterious than short and common tracts. Association mapping of autozygous tracts did
not reveal any specific regions that were predictive beyond chance after correcting for multiple testing genome wide. The observed
effect size is consistent with studies of cognitive decline among offspring of known consanguineous relationships. These findings
suggest a role for multiple recessive or partially recessive alleles in general cognitive ability, and that alleles decreasing general
cognitive ability have been selected against over evolutionary time.
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INTRODUCTION
General cognitive ability, traditionally measured through intelli-
gence quotient-type psychometric tests, is a composite measure

of cognition across multiple domains.1–3 It reliably predicts many
life outcomes, such as health, longevity, social mobility and
occupational success.4–7 Decades of behavioral genetic research
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on general cognitive ability have shown moderate to high
heritability estimates across development.8–11 Results from GWAS
and mixed linear models estimating variance components from
single-nucleotide polymorphisms (SNPs) suggest that the genetic
variation underlying general cognitive ability is highly polygenic
and predominantly additive in nature.12–14 Consequently, family
studies have shown that offspring of consanguineous marriages
have lower cognitive performance than the general population,
supporting a role for inbreeding depression on general cognitive
ability.15–20

The hypothesized cause of inbreeding depression, directional
dominance of alleles that affect fitness, is thought to occur
because selection acts more efficiently on additive effects than on
recessive effects, which tends to bias deleterious effects toward a
recessive mode of action.21 Inbreeding increases the probability
that recessive/partially recessive deleterious mutations are homo-
zygous by increasing the proportion of the genome that is
autozygous (stretches of two homologous chromosomes in the
same individual that are identical by descent). We denote
genome-wide estimates of inbreeding as F, with the subscript
denoting the method by which inbreeding is estimated (for
example, Fsnp measures inbreeding directly from individual SNP
genotypes). It is important to recognize that traits influenced by
inbreeding depression are not predicted to have high levels of
nonadditive genetic variation; if inbreeding depression occurs
because of the effects of rare, partially recessive deleterious
mutations, most of the genetic variation will be additive.22,23

Although highly inbred individuals are autozygous for a sub-
stantial proportion of their genome (for example, first cousin
inbreeding leads to 6.25% average autozygosity genome-wide),
autozygosity still occurs in outbred populations, albeit at lower
levels, owing to shared distant common ancestors between mates
of no known relationship. Using high-density SNP arrays, the
existence of autozygosity arising from distant inbreeding can be
inferred using runs of homozygosity (ROH)—multiple homozy-
gous SNPs in a row.24–26 To the degree that ROHs accurately
measure autozygosity, ROHs capture not only homozygosity at
measured SNPs, but also homozygosity at rare, unmeasured
variants that exist within ROHs.27,28 Thus, inbreeding estimates
based on SNP-by-SNP excess homozygosity (Fsnp) capture the
effects of homozygosity at common variants, whereas inbreeding
estimates based on the proportion of the genome in ROHs (Froh)
capture the effects of homozygosity at both common and rare
variants.
To date, a number of studies have examined the effect of Froh

burden and individual ROH regions on case/control and quanti-
tative phenotypes, with early studies showing mixed results,29

including a nonsignificant Froh-cognitive ability relationship
among individuals of European ancestry (n= 2329).30 Given the
low variation in Froh among outbred samples, it is likely that these
studies were underpowered.28 Investigations with larger samples
have been more successful, finding increased Froh burden
associated with schizophrenia,31 height32 and personality.33 Here
we present an analysis of Froh on general cognitive ability for 4854
individuals of European ancestry from nine samples, including five
samples from the COGENT consortium.34 Understanding the
contribution of autozygosity to individual differences in general
cognitive ability can help elucidate the genetic architecture
underlying this important and highly polygenic trait.

MATERIALS AND METHODS
Genetic and sample quality control
Quality control (QC) procedures focused on properties that would be
appropriate across a range of genotyping platforms that differed in SNP
density. The main goal—analyzing runs of homozygosity to infer
autozygosity—differed from the usual goal of finding associations
between individuals SNPs and a phenotype, and so the procedures Ta
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adopted were more stringent than those typically used in genome-wide
association studies. Moreover, because so many SNPs (70–75% depending
on the sample) were removed owing to linkage disequilibrium (LD)
pruning during ROH detection (see below), we could afford to use more
stringent QC procedures, because dropped SNPs were likely to be in strong
LD with other nearby SNPs that were retained.
Table 1 lists the specific genotyping platforms used, with an average LD-

pruned SNP density of 229 k SNPs (range: 174 k–277 k). The specific QC
procedures and numbers of individuals or SNPs dropped at each step can
be found in Supplementary Table S1. Individuals whose self-reported sex
was discrepant from their genotypic sex were dropped, as these
individuals might represent sample mix-ups. Individuals who self-
identified as non-European ancestry were dropped, as both homozygosity
and phenotypic measures might differ between ethnicities or across
different levels of genetic admixture. We also merged the genotype data
with HapMap2 reference samples,35 and removed anyone clearly outside
of the European ancestry cluster. Finally, we did not remove individuals
with excess genome-wide homozygosity as such individuals are more
likely to be inbred and therefore informative for investigating the current
hypothesis. After subject QC, autosomal SNPs with MAF45%, successfully
genotyped in at least 99.5% of individuals, and in Hardy–Weinberg
equilibrium (P40.001) were retained for analysis.

Runs of homozygosity calling procedures
ROH were called in PLINK using the --homozyg command,36 which has
been found to outperform other programs in accurately identifying
autozygous segments.37 The current analysis incorporated the ROH tuning
parameters recommended in Howrigan et al.37 In particular, each data set
was pruned for either moderate LD (removing any SNP with R240.5 with
other SNP in a 50-SNP window) or strong LD (removing any SNP with
R240.9 with other SNP in a 50-SNP window). For moderate LD-pruned
SNPs, the minimum SNP length threshold was set to 35, 45, or 50 SNPs. For
strong LD-pruned SNPs, the minimum SNP length threshold was set to 65
SNPs. We did not allow for heterozygote SNPs, used a window size equal to
the minimum SNP threshold, and allowed for 5% of SNPs to be missing
within the window.37 In addition, PLINK’s --homozyg-group and --homo-
zyg-match commands were used to find allelically matching ROH that
overlapped at least 95% of physical distance of the smaller ROH, and this
parameter was used to define common and uncommon ROH. We chose
the 65-SNP minimum pruned for strong LD, as this parameter setting has
been used in previous analyses.31 Primary Froh burden results, however,
were similar for all four tuning parameters used (Supplementary Table S2).

Froh genotype
Genome-wide ROH burden, or Froh, represents the percent of the
autosome in ROHs. Froh was derived by summing the total length of
autosomal ROHs in an individual and dividing this by the total SNP-
mappable autosomal distance (2.77 × 109). The distribution of Froh in the
sample is listed in Supplementary Figure S1. Froh can be affected by
population stratification (for example, if background levels of homo-
zygosity or autozygosity differ across ethnicities), low-quality DNA leading
to bad SNP calls, and heterozygosity levels that differ depending on, for
example, genotype plate, DNA sources, SNP calling algorithm or sample
collection site. We controlled for covariates in two steps—within data set
and across the combined data sets. Within each data set, we controlled for
the first 10 principal components generated from an identity-by-state
matrix derived from a subset of SNPs (~50 000) within each data set. We
also controlled for age and age-squared within data set when provided, as
age information was not available in 4 of the 11 studies (Table 2). We used
the linear model residuals from within each data set as our Froh genotype
moving forward. Across the combined samples, we controlled for gender,
data set, the percentage of missing calls—which has been shown to track
the quality of SNP calls,38 and excess SNP-by-SNP homozygosity (Fsnp, from
PLINK’s --het command)—which can be used to test the effects of
homozygosity at common but not rare variants.

General cognitive ability phenotype
Table 2 lists the sample characteristics and various measures of general
cognitive ability employed (additional description in Supplementary
Information). To reduce the bias of specific cognitive testing instruments,
composite scores or measurement schemes, measures of general cognitive
ability were converted into Z-scores within each data set (Supplementary
Figure S2). We then controlled for potential confounds in same manner as
the Froh genotype, regressing out the first 10 principal components, age
and age-squared within each data set, and data set, gender, SNP
missingness and Fsnp across the combined data set. By controlling for
covariates in a similar manner for both the Froh and general cognitive
ability phenotype, we are able to assess the unique covariance between
Froh and general cognitive ability within a multilevel statistical framework.

Froh burden analysis
To test the effect of Froh burden on general cognitive ability, we examined
both fixed-effects modeling (that is, lm() in R) and mixed-effects modeling
treating data set as a random effect (that is, lmer() from the lme4 package

Table 2. Descriptive statistics of general cognitive ability, age and sex across data sets

Data set N Region Cognitive ability measures Mean age, years (s.d. or range) Male (%) Female (%)

IBG 301 Colorado, USA WAIS-III: 2 subtests (Ages 16+)
WISC-III: 2 subtests (Ages 8–16)

15.91 (1.53) 232 (77%) 69 (23%)

GAIN NE 357 Northern Europe WAIS-III: 4 subtests (Ages 16+)
WISC-III: 4 subtests (Ages 5–16)

10.95 (2.57) 305 (85%) 52 (15%)

GAIN UK 183 United Kingdom WAIS-III: 4 subtests (Ages 16+)
WISC-III: 4 subtests (Ages 5–16)

11.67 (2.83) 165 (90%) 18 (10%)

GAIN SP 68 Spain WAIS-III: 4 subtests (Ages 16+)
WISC-III: 4 subtests (Ages 5–16)

9.40 (2.53) 62 (91%) 6 (9%)

MANC 763 England Cattell Culture Fair Test 64.9 (6.14) 226 (30%) 537 (70%)
NEWC 717 England Cattell Culture Fair Test 65.71 (6.10) 206 (29%) 511 (71%)
LOGOS 776 Greece Cambridge NTAB: 3 subtests

N-Back task
Wisconsin card sort
Stroop Gambling task
Wechsler memory scale

22.13 (18–29) 776 (100%) 0 (0%)

NCNG 623 Norway California Verbal Learning Test-II
D-KEFS Color Word interference
WAIS-III Matrix Reasoning subscale
Multiple choice reaction time task

NA 200 (32%) 423 (68%)

ZHH 175 New York, USA MATRICS Consensus Cognitive Battery NA 85 (49%) 90 (51%)
TOP 305 Norway WASI: 4 subtests

National Adult Reading Test
NA 165 (54%) 140 (46%)

RUJ 586 Germany WAIS-R NA 293 (50%) 293 (50%)
Total 4854 — — — 2715 (56%) 2139 (44%)

Abbreviation: NA, not applicable. Data sets where age information was unavailable were not included in the regression model.
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in R). Both analyses showed very consistent results, and we used fixed-
effects modeling approach for all analyses hereafter. For our primary
analysis, we tested the effects of Froh after controlling for Fsnp as we have
done previously,31 not only because this analysis provides information on
the importance of rare recessive variants in particular, which are thought to
be the primary cause of inbreeding depression,21 but also because
controlling for Fsnp can increase power to detect Froh relationships in the
presence of genotyping errors.28 We also report the effects of Froh not
controlling for Fsnp.
In follow-up analyses, Froh burden was partitioned into short and long

ROH, as well as common and uncommon ROH, by using a median split.
Owing to the large variation in SNP density across genotyping platforms
(ranging from 300 k to over 1 million SNPs), the median split for both ROH
length and frequency were calculated within each data set (see
Supplementary Table S3). Across all data sets, short ROH make up 34%
of the total Froh coverage, with 66% in long ROH. For the median split of
ROH frequency, common ROH make up 38% of total Froh coverage, with
62% in uncommon ROH.

ROH mapping analysis
To investigate whether specific genomic regions predicted general
cognitive ability, we co-opted the rare CNV commands used in PLINK,
whereby each ROH segment was tested at the two SNPs defining the start
and end position. At each position, all individuals with ROH overlapping
the tested SNP were included as ROH carriers. General cognitive ability
residuals, after controlling for all covariates, were used as the dependent
variable. We restricted ROH mapping to positions where five or more ROHs
existed across the sample, and derived statistical significance at each
position from one million permutations in PLINK.
To derive an experiment-wide significance threshold for multiple tests,

we estimated the family-wise error rate directly from permutation. To do
so, we ran 1000 permutations on the general cognitive ability phenotype
and obtained empirical P-values in the same manner as above. We then

extracted the most significant P-value from each permutation, and used
the 95th percentile (or 50th most significant P-value among the set) as our
significance threshold (P= 4e− 6). Thus, under the null hypothesis, we had
a 5% chance of observing a significant finding.

RESULTS
Figure 1 shows the parameter estimates of Froh predicting general
cognitive ability within each data set and combined across the full
sample. In the combined sample, higher levels of Froh were
associated, albeit modestly, with lower general cognitive ability
(β=− 9.8, t(4852) =− 2.31, P= 0.02). This estimate suggests that
every 1% point increase in Froh corresponds to a ~ 0.1 s.d.
reduction in general cognitive ability, extrapolating to an
expected ~ 0.6 s.d. reduction among the offspring of first cousins.
Within each data set, only the TOP sample exhibited a significant
negative relationship between Froh and general cognitive ability.
Nevertheless, the majority (7/9) of data sets predict lower
cognitive ability and none exhibited a significant positive
association. Our estimate was not driven by potential outliers in
Froh, as it increased when we removed the 33 individuals with no
ROH calls and 5 individuals with 46% Froh (β=− 12.8, t(4814) =
− 2.68, P= 0.007), and was insensitive to ROH calling thresholds
⩾ 50 consecutive homozygous SNPs (Supplementary Figure S3).
Furthermore, we found no evidence that copy number deletions
reported in the literature were driving the relationship between
Froh and general cognitive ability (see Supplementary
Information). In general, the estimate remained stable across
models where covariates were removed in stepwise manner or
split by age groups or sex. In particular, the estimate for Froh on
general cognitive ability was more significant when SNP-by-SNP

Figure 1. Forest plot of slope estimates and 95% confidence intervals of Froh predicting general cognitive ability. Points represent slope
estimates and bars represent 95% confidence intervals. Data sets are color coded by the genotyping platform used. The three GAIN data sets
were combined for clarity.
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homozygosity, Fsnp, was removed as a covariate (β=− 9.9,
t(4852) =− 2.92, P= 0.003), whereas Fsnp did not itself predict
general cognitive ability (β=− 0.1, t(4852) =− 0.04, P= 0.97), and
suggests that homozygosity at rare variants drove the observed
Froh effect. Finally, contrary to a previous report,30 we found no
evidence for increased assortative mating or inbreeding at the
upper tail of the cognitive ability distribution.
Additional analyses found that Froh from long ROH (β=− 9.2,

t(4852) =− 2.15, corrected P= 0.12), and rare ROH (β=− 15.4,
t(4852) =− 2.56, corrected P= 0.04) remain consistent with the
overall Froh association. Froh estimates from short or common ROH,
however, no longer show any association signal (P40.30 for both,
see Supplementary Information for full analysis). Both short
autozygous haplotypes, which arise from more distant common
ancestry, and common autozygous haplotypes, which arise from
chance pairing of common haplotypes segregating in the
population, have had more opportunities to be subject to natural
selection when autozygous. This may bias them to be less
deleterious when autozygous than long or rare haplotypes.
In addition to Froh burden, we mapped individual ROH along the

autosome to assess whether specific regions associate with
general cognitive ability. Using PLINK, we mapped and analyzed
ROH segments at their respective ends (that is, the first and last
SNP in the ROH), counting all overlapping ROH incorporating that
SNP as ROH carriers. We observed minimal test statistic inflation
across the genome (λGC = 1.02; QQ plot shown in Supplementary
Figure S5), suggesting that the integration of various subpopula-
tions within the full sample were adequately controlled and did
not inflate ROH mapping test statistics. Among mapped regions,
we detected two ROH hotspots in the genome where more than
5% of individuals qualify as ROH carriers. These hotspots occur at
well known regions of recent positive selection in lactase
persistence on chromosome 2 (ref. 39) and the MHC region on
chromosome 6 (ref. 40) with neither showing association with
general cognitive ability (P40.05). Overall, we did not identify any
specific ROH regions that surpassed strict genome-wide correction
(Figure 2), and we highlight 16 regions with Po0.001 as potential
areas of interest (Supplementary Table S4). Our top association,

located on chromosome 21q21.1 (P= 5.4e− 5, Supplementary
Figure S6), predicts lower general cognitive ability and has a
distinct peak over USP25, a ubiquitin-specific peptidase gene
expressed across a variety tissues types, including brain.41

DISCUSSION
After stringent quality control and the application of preferred
methods for detecting autozygosity, we observe a significant,
albeit modest, trend of autozygosity burden (Froh) lowering
cognitive ability among outbred populations of European
ancestry. Inbreeding among first cousins leads to an average Froh
burden of 6.25%, and corresponds to a predicted drop of 9.19
intelligence quotient points in the current study. This effect is
consistent with previously detected effects from pedigree-based
consanguineous inbreeding,15 reassuring us that our observed
effect is genuine. In addition, we find that long and rare ROH are
driving Froh association to general cognitive ability, as the
relationship of Froh to general cognitive ability disappear when
restricting to either short or common ROH, but remain when
considering either long or rare ROH. At the level of individual ROH,
however, we do not identify any specific autozygous loci that
significantly predicted general cognitive ability after genome-wide
correction.
During the acquisition of the current data set, we were aware

that very large sample sizes, on the order of 20 000–60 000, were
needed to obtain adequate power for detecting the effects of
inbreeding depression.28 This is because outbred populations
generally exhibit low variation in overall autozygosity, and larger
samples are necessary to detect a robust signal. In fact, a recent
effort from the ROHgen consortium examining the relationship of
Froh to a number of quantitative human traits robustly associated
higher Froh to lower levels of general cognitive ability
(P= 2.5e− 10) in a sample of 53 300 individuals.42 Their sample
is fully independent from the current study, and their reported
effect size of Froh (β=− 4.6) is attenuated relative to our observed
Froh estimate (β=− 9.9). The consistent direction of association
between cohorts and robust significance in the fully powered

Figure 2. ROH mapping Manhattan plot predicting general cognitive ability. Top panel: − log10 P-values for ROH regions predicting general
cognitive ability. Regions with P-values below 0.001 are flagged for predicting lower cognitive ability (red) and higher cognitive ability (blue).
The red dotted line is the experiment-wide correction estimate, set at 4e− 6, which is the top 5% of minimum P-values observed across 1000
permutations. Bottom panel: ROH frequencies for each region across the autosome, with the highest frequency of ROH due to balancing
selection in the MHC (chr6) and recent positive selection in lactase persistence gene region (chr2). ROHs, runs of homozygosity.
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ROHgen consortium study provides strong and replicable
evidence that increased Froh associates with lower general
cognitive ability.
There were several limitations to the current study that were

largely a consequence of combining multiple data sets together.
First, the operational construct of general cognitive ability differed
somewhat between data sets (see Table 2 and Supplementary
Information), and statistical power can be lost as a function of the
degree of phenotypic heterogeneity in measured cognitive ability
across samples. Second, despite following strict QC procedures,
the use of different genotyping platforms affects ROH calls across
data sets. Although data set was included as a covariate, such
differences add noise and reduce statistical power, and it is
impossible to rule out all biases that could arise from such
differences between data sets. Finally, the autozygosity—cogni-
tive ability relationship might be mediated differentially across
sites/data sets. For example, analysis of the Netherlands Twin
Registry found that increased religiosity was associated with both
higher autozygosity and lower rates of major depression in the
Netherlands, which if unaccounted for, would have obscured the
true relationship between major depression and autozygosity.43

More recent evidence in the same data set found that increased
parental migration mediated the relationship of education
attainment to autozygosity.44 Unfortunately, these potential
confounds are often unmeasured and were unavailable in the
current study. More generally, the correlational design of this
study disallows causal inference. It is possible that lower general
cognitive ability or some third variable associated with lower
general cognitive ability leads to a reduced affinity for migration
or culturally diverse mating patterns, thereby increasing the
probability for distant inbreeding.
Autozygosity is the most direct measure of inbreeding at the

genetic level. It can help elucidate the genetic architecture
underlying heritable traits like general cognitive ability and
provide clues to the evolutionary forces that acted on alleles
affecting the trait. Our results suggest that alleles that decrease
cognitive ability are more recessive than otherwise expected, and
are consistent with the hypothesis that alleles that lead to lower
cognitive ability have, on average, been under negative selection
ancestrally. Moving forward, larger sample sizes, inclusion of
populations with higher variance in inbreeding, ascertainment of
samples toward the extreme end of cognitive ability, along with
genome sequence analysis of autozygous tracts, will all help to
refine to scope of inbreeding depression on general cognitive
ability and provide the statistical power for more refined genetic
mapping approaches.
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